Discrete Convexity in Probability, Tools & Applications

Heshan Aravinda

- Convex Sets & Functions
- Convexity of Measures
- 3 Convexity of Measures in the Discrete Setting
- 4 An Approach to Studying Discrete Measures
- 6 Applications

Convex Sets

Convex Sets

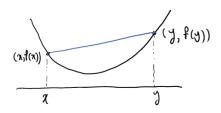
How to tell if a shape is convex?

A set in the Euclidean space is convex if it has "no holes" or "dents"

Definition 1 (convex sets).

A set $K \subseteq \mathbb{R}^n$ is convex, if for any $x,y \in K$ and $0 \le \lambda \le 1$, $\lambda x + (1-\lambda)y \in K$.

Convex Functions



Every line segment joining two points on its graph does not lie below the graph at any point

Definition 2 (convex functions).

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its domain is a convex set and for all x,y in its domain, and $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

A Generalization...

• A convenient generalization of the standard convexity definition is the following:

Definition 3 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1 - \lambda)x + \lambda y) \ge [(1 - \lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

• The parameter s is understood as a *convexity parameter*.

s-concavity of Functions ctd.

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1-\lambda)x + \lambda y) \ge [(1-\lambda)\mathbf{f}(\mathbf{x})^{\mathbf{s}} + \lambda \mathbf{f}(\mathbf{y})^{\mathbf{s}}]^{1/\mathbf{s}},$$

whenever f(x)f(y) > 0.

- If $s = +\infty$, then $f((1 \lambda)x + \lambda y) \ge \max\{f(x), f(y)\}.$
- If s = 0, then $f((1 \lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$.
- If $s = -\infty$, then $f((1 \lambda)x + \lambda y) \ge \min\{f(x), f(y)\}.$

Convexity of Measures

How to capture convexity of measures?

Definition 5 (Borell '75).

Fix $s \in [-\infty, \infty]$. A finite measure μ on \mathbb{R}^n is called s-concave if

$$\mu((1-\lambda)A + \lambda B) \ge \left[(1-\lambda)\,\mu(A)^s + \lambda\,\mu(B)^s \right]^{1/s}$$

for non-empty Borel subsets $A, B \subseteq \mathbb{R}^n$.

• The case $s=-\infty$ describes the class of *convex measures* (or hyperbolic measures), defined as

$$\mu((1-\lambda)A + \lambda B) \ge \min\{\mu(A), \mu(B)\}.$$

Examples/ Motivation

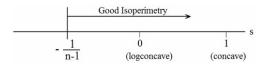
Which measures have convexity properties?

- Lebesgue measure on \mathbb{R}^n .
- Uniform measure on a convex body K in \mathbb{R}^n .
- Standard Gaussian measure on \mathbb{R}^n :

$$\gamma_n(x) = (2\pi)^{-n/2} e^{-\frac{\|x\|^2}{2}}.$$

Motivation for Convex Measures/Functions

• Extend general properties of log-concave measures (corresponds to s=0) - concentration, isoperimetric inequality, etc.



 Generalize techniques like localization due to Lovász and Simonovits '90s.

The principle of the localization

Convexity in the Discrete Setting

Convexity in the discrete setting?

ullet A function $V:\mathbb{Z} \to \mathbb{R} \cup \{+\infty\}$ is said convex if

$$\Delta^2 V(z) := V(z-1) - 2V(z) + V(z+1) \geq 0 \ \text{ for all } z \in \mathbb{Z}.$$

ullet Equivalently, V is convex on $\mathbb Z$ if and only if there exists a continuous and convex function $\bar V$ such that $\bar V=V$ on $\mathbb Z.$

Extension of Discrete Convexity

A natural extension of s-concavity in the discrete setting

Definition 6 (Discrete *s*-concave).

Fix $s \in [-\infty, \infty]$. A function $f: \mathbb{Z} \to \mathbb{R}^+$ is s-concave if $\{f>0\}$ is an interval of integers and

$$f(k) \ge \left[\frac{f(k-1)^s + f(k+1)^s}{2}\right]^{1/s}.$$

• The case s=0 corresponds to discrete log-concavity (LC), i.e. $f^2(k) \ge f(k-1) f(k+1)$.

Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **log-concave** (w.r.t the counting measure) if its probability mass function $p(k) = \mathbb P(X=k)$ satisfies,

$$p^2(k) \geq p(k-1) \, p(k+1) \ \text{ for all } k \in \mathbb{Z} \, .$$

Definition 8 (Generalized LC Random Variables).

A random variable X on \mathbb{Z} is said to be **generalized log-concave** w.r.t a reference measure γ , if its probability mass function p w.r.t γ is LC.

ullet X is called **ultra-log-concave**, if γ is a Poisson measure.

Examples

Continuous Setting

Measures :-

Lebesgue measure

Probability:-

- Normal
- Uniform
- Exponential
- Chi
- Laplace

Discrete Setting

- Bernoulli
- Binomial
- Poisson
- Geometric
- · Negative binomial
- Hypergeometric

Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC probabilities on \mathbb{Z} .

Example:

- Concentration behavior.
- Large and small deviation.
- Existence of moments.
- Stability under convolution.
- Geometric inequalities (Prékopa-Leindler etc.)
- Dilation inequalities.

An Optimization Technique?

Concentration behavior
Large and small deviation
Existence of moments
Stability under convolution
Geometric inequalities
Dilation inequalities

Goal: Develop an optimization-type technique!

Let's call this technique a "discrete localization"

A Discrete Localization

Notation: Let $a, b \in \mathbb{Z}$.

- $\mathcal{P}(\llbracket a,b \rrbracket)$: The set of all probabilities supported on $\llbracket a,b \rrbracket$.
- $h_1, h_2, ..., h_p$: Arbitrary real-valued functions defined on [a, b].
- $h = (h_1, h_2, ..., h_p).$

Consider the following set:

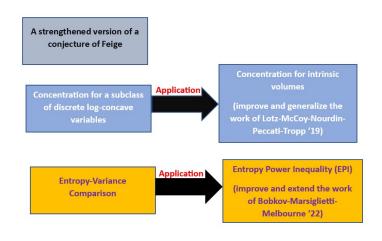
$$\mathcal{P}_h^{\gamma}([\![a,b]\!])=\left\{\mathbb{P}_X\in\mathcal{P}([\![a,b]\!])\,:\,\mathsf{X}\;\mathsf{log\text{-}concave}\,,\,\mathbb{E}[h_i(X)]\geq 0\right\}.$$

Theorem 1 (H. '24).

If $\mathbb{P}_X \in conv(\mathcal{P}_h^{\gamma}(\llbracket a,b \rrbracket))$ is an extreme point, then it is \log piecewise affine (w.r.t γ).

This extends the localization result of Melbourne-Marsiglietti (2021).

Applications of Discrete Localization



Ultra Log-Concave Random Variables

Definition 9.

A random variable X taking values in $\{0, 1, 2, ...\}$ is said to be **ultra** log-concave (ULC) if its probability mass function p is LC w.r.t Poisson measure, i.e.

$$p^2(k) \ge \frac{k+1}{k} p(k+1) p(k-1)$$
 for all $k \ge 1$.

Examples:

- Binomial
- Poisson
- Sums of i.i.d binomial with arbitrary parameters
- Hypergeometric distribution (= sum of independent Bernoulli, Ehm '91).

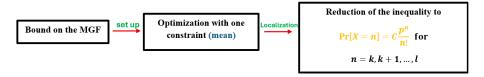
Concentration For ULC Random Variables

Theorem 2 (H., Marsiglietti, Melbourne '22).

For X- ultra log-concave,

- $\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tZ}]$ for all $t \in \mathbb{R}$, where $Z \sim Pois(\mathbb{E}[X])$.
- $\bullet \ \mathbb{P}(|X \mathbb{E}[X]| \geq t) \leq 2e^{\frac{-t^2}{2\,(t + \mathbb{E}[X])}} \ \text{ for all } t \geq 0\,.$
- In other words, all ultra log-concave sequences exhibit Poisson-type concentration.

Proof Ideas



- Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on $[\![k,l]\!]$.
- The idea is to use **the discrete localization** with the constraint function chosen as $h(z) = \mathbb{E}[X_0] z$ for all $z \in [k, l]$.
- Verify the inequality for extreme points, i.e. distributions of the form

$$\mathbb{P}[X=z] = C \frac{p^z}{z!} 1_{[\![k,l]\!]}(z), \ p, C > 0$$

Conclude with the Cramér-Chernoff method.

A Consequence: Intrinsic Volumes

Corollary 1.

Let $K \subset \mathbb{R}^d$ be a non-empty convex body with intrinsic volume random variable Z_K . The variance satisfies,

$$Var[Z_k] \leq d$$
.

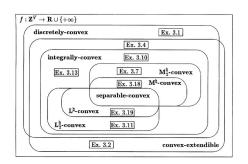
Moreover, in the range $0 \le t \le \sqrt{d}$,

$$\mathbb{P}(|Z_K - \mathbb{E}[Z_K]| \ge t\sqrt{d}) \le 2e^{\frac{-t^2}{2}}$$

• Improves upon a result of Lotz-McCoy-Nourdin-Peccati-Tropp (2019)

Future Directions

- Investigate similar properties for (1-dimensional) discrete s-concave random variables.
- ② Develop a localization for log-concave probabilities in \mathbb{Z}^d and explore applications.



• Murota, Shioura. Recent developments in discrete convex analysis.

Thank You!