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Convex Sets

Definition 1 (convex sets).

A set K ⊆ Rn is convex, if for any x, y ∈ K and 0 ≤ λ ≤ 1,
λx+ (1− λ) y ∈ K.
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Convex Functions

Definition 2 (convex functions).

A function f : Rn → R is convex if its domain is a convex set and for all
x, y in its domain, and 0 ≤ λ ≤ 1,

f(λx+ (1− λ) y) ≤ λf(x) + (1− λ)f(y).
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A Generalization...

A convenient generalization of the standard convexity definition is the
following:

Definition 3 (s−concave functions).

Fix s ∈ [−∞,∞]. A function f : Rn → [0,∞) is s−concave if

f((1− λ)x+ λy) ≥ [(1− λ) f(x)s + λf(y)s]1/s ,

whenever f(x)f(y) > 0.

The parameter s is understood as a convexity parameter.
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s-concavity of Functions ctd.

Definition 4 (s−concave functions).

Fix s ∈ [−∞,∞]. A function f : Rn → [0,∞) is s−concave if

f((1− λ)x+ λy) ≥ [(1− λ) f(x)s + λf(y)s]1/s,

whenever f(x)f(y) > 0.

If s = +∞, then f((1− λ)x+ λy) ≥ max{f(x), f(y)}.

If s = 0, then f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ.

If s = −∞, then f((1− λ)x+ λy) ≥ min{f(x), f(y)}.
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Convexity of Measures

Definition 5 (Borell ’75).

Fix s ∈ [−∞,∞]. A finite measure µ on Rn is called s−concave if

µ((1− λ)A+ λB) ≥ [(1− λ)µ(A)s + λµ(B)s]1/s

for non-empty Borel subsets A,B ⊆ Rn.

The case s = −∞ describes the class of convex measures (or
hyperbolic measures), defined as

µ((1− λ)A+ λB) ≥ min{µ(A), µ(B)}.
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Examples/ Motivation

Lebesgue measure on Rn.

Uniform measure on a convex body K in Rn.

Standard Gaussian measure on Rn:

γn(x) = (2π)−n/2e−
∥x∥2

2 .
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Motivation for Convex Measures/Functions

Extend general properties of log-concave measures (corresponds to
s = 0) - concentration, isoperimetric inequality, etc.

Generalize techniques like localization due to Lovász and
Simonovits ’90s.
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Convexity in the Discrete Setting

A function V : Z → R ∪ {+∞} is said convex if

∆2V (z) := V (z − 1)− 2V (z) + V (z + 1) ≥ 0 for all z ∈ Z.

Equivalently, V is convex on Z if and only if there exists a continuous
and convex function V̄ such that V̄ = V on Z.
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Extension of Discrete Convexity

Definition 6 (Discrete s-concave).

Fix s ∈ [−∞,∞]. A function f : Z → R+ is s−concave if {f > 0} is an
interval of integers and

f(k) ≥
[
f(k − 1)s + f(k + 1)s

2

]1/s
.

The case s = 0 corresponds to discrete log-concavity (LC), i.e.
f2(k) ≥ f(k − 1) f(k + 1).
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Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on Z is said to be log-concave (w.r.t the counting
measure) if its probability mass function p(k) = P(X = k) satisfies,

p2(k) ≥ p(k − 1) p(k + 1) for all k ∈ Z .

Definition 8 (Generalized LC Random Variables).

A random variable X on Z is said to be generalized log-concave w.r.t a
reference measure γ, if its probability mass function p w.r.t γ is LC.

X is called ultra-log-concave, if γ is a Poisson measure.
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Examples
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Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are
well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC
probabilities on Z.

Example:

Concentration behavior.

Large and small deviation.

Existence of moments.

Stability under convolution.

Geometric inequalities (Prékopa-Leindler etc.)

Dilation inequalities.
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An Optimization Technique?

Goal: Develop an optimization-type technique!
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A Discrete Localization

Notation: Let a, b ∈ Z.

P(Ja, bK) : The set of all probabilities supported on Ja, bK.
h1, h2, ..., hp: Arbitrary real-valued functions defined on Ja, bK.
h = (h1, h2, ..., hp).

Consider the following set:

Pγ
h (Ja, bK) = {PX ∈ P(Ja, bK) : X log-concave , E[hi(X)] ≥ 0} .

Theorem 1 (H. ’24).

If PX ∈ conv(Pγ
h (Ja, bK)) is an extreme point, then it is log piecewise

affine (w.r.t γ).

This extends the localization result of Melbourne-Marsiglietti (2021).
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Applications of Discrete Localization
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Ultra Log-Concave Random Variables

Definition 9.

A random variable X taking values in {0, 1, 2, ...} is said to be ultra
log-concave (ULC) if its probability mass function p is LC w.r.t Poisson
measure, i.e.

p2(k) ≥ k + 1

k
p(k + 1) p(k − 1) for all k ≥ 1 .

Examples:

Binomial

Poisson

Sums of i.i.d binomial with arbitrary parameters

Hypergeometric distribution (= sum of independent Bernoulli, Ehm
’91).
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Concentration For ULC Random Variables

Theorem 2 (H., Marsiglietti, Melbourne ’22).

For X− ultra log-concave,

E[etX ] ≤ E[etZ ] for all t ∈ R, where Z ∼ Pois(E[X]).

P(|X − E[X]| ≥ t) ≤ 2e
−t2

2 (t+E[X]) for all t ≥ 0 .

⋄ In other words, all ultra log-concave sequences exhibit Poisson-type
concentration.
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Proof Ideas

Fix an ultra log-concave random variable X0. By approximation,
assume that X0 is compactly supported, say on Jk, lK.
The idea is to use the discrete localization with the constraint
function chosen as h(z) = E[X0]− z for all z ∈ Jk, lK .

Verify the inequality for extreme points, i.e. distributions of the form

P[X = z] = C
pz

z!
1Jk,lK(z), p, C > 0

Conclude with the Cramér-Chernoff method.
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A Consequence: Intrinsic Volumes

Corollary 1.

Let K ⊂ Rd be a non-empty convex body with intrinsic volume random
variable ZK . The variance satisfies,

Var[Zk] ≤ d .

Moreover, in the range 0 ≤ t ≤
√
d,

P(|ZK − E[ZK ]| ≥ t
√
d) ≤ 2e

−t2

2
.

Improves upon a result of Lotz-McCoy-Nourdin-Peccati-Tropp (2019)
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Future Directions

1 Investigate similar properties for (1-dimensional) discrete s-concave
random variables.

2 Develop a localization for log-concave probabilities in Zd and explore
applications.

Murota, Shioura. Recent developments in discrete convex analysis.
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Thank You!
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