Discrete Convexity in Probability, Tools & Applications

Heshan Aravinda

- Convex Sets & Functions
- Convexity of Measures
- 3 Convexity of Measures in the Discrete Setting
- 4 An Approach to Studying Discrete Measures
- 6 Applications

Convex Sets

Convex Sets

Convex Sets

Convex Sets

How to tell if a shape is convex?

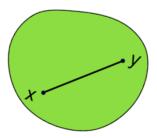
A set in the Euclidean space is convex if it has "no holes" or "dents"

Convex Sets

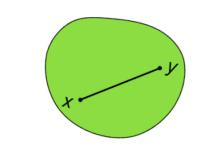
Convex Sets

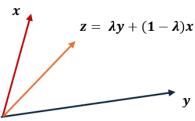
How to tell if a shape is convex?

A set in the Euclidean space is convex if it has "no holes" or "dents"

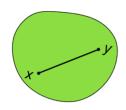


Convex Sets ctd.





Convex Sets ctd.

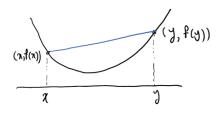


Definition 1 (convex sets).

A set $K \subseteq \mathbb{R}^n$ is convex, if for any $x,y \in K$ and $0 \le \lambda \le 1$, $\lambda x + (1 - \lambda) y \in K$.

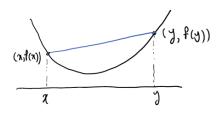
Non-Convex Sets

Convex Functions



Every line segment joining two points on its graph does not lie below the graph at any point

Convex Functions



Every line segment joining two points on its graph does not lie below the graph at any point

Definition 2 (convex functions).

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its domain is a convex set and for all x,y in its domain, and $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Convex/Concave Functions & Extensions

• A function f is concave iff -f is convex.

Convex/Concave Functions & Extensions

- A function f is concave iff -f is convex.
- A convenient generalization of the standard convexity definition is the following:

Definition 3 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1-\lambda)x + \lambda y) \ge [(1-\lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

Convex/Concave Functions & Extensions

- A function f is concave iff -f is convex.
- A convenient generalization of the standard convexity definition is the following:

Definition 3 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1-\lambda)x + \lambda y) \ge [(1-\lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

• The parameter s is understood as a *convexity parameter*.

s-concavity of Functions ctd.

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1 - \lambda)x + \lambda y) \ge [(1 - \lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

s-concavity of Functions ctd.

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1 - \lambda)x + \lambda y) \ge [(1 - \lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

• If $s = +\infty$, then $f((1 - \lambda)x + \lambda y) \ge \max\{f(x), f(y)\}.$

s-concavity of Functions ctd. $^{!}$

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1 - \lambda)x + \lambda y) \ge [(1 - \lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

- If $s = +\infty$, then $f((1 \lambda)x + \lambda y) \ge \max\{f(x), f(y)\}.$
- If s = 0, then $f((1 \lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$.

s-concavity of Functions ctd.

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1-\lambda)x + \lambda y) \ge [(1-\lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

- If $s = +\infty$, then $f((1 \lambda)x + \lambda y) \ge \max\{f(x), f(y)\}.$
- If s = 0, then $f((1 \lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$.
- If $s = -\infty$, then $f((1 \lambda)x + \lambda y) \ge \min\{f(x), f(y)\}.$

s-concavity of Functions ctd.

Definition 4 (s-concave functions).

Fix $s \in [-\infty, \infty]$. A function $f : \mathbb{R}^n \to [0, \infty)$ is s-concave if

$$f((1 - \lambda)x + \lambda y) \ge [(1 - \lambda)f(x)^s + \lambda f(y)^s]^{1/s},$$

whenever f(x)f(y) > 0.

- If $s = +\infty$, then $f((1 \lambda)x + \lambda y) \ge \max\{f(x), f(y)\}.$
- If s = 0, then $f((1 \lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$.
- If $s = -\infty$, then $f((1 \lambda)x + \lambda y) \ge \min\{f(x), f(y)\}.$

NOTE: For a, b > 0, the map $s \to [(1 - \lambda) a^s + \lambda b^s]^{1/s}$ is non-decreasing!!

Convexity of Measures

How to capture convexity of measures?

Convexity of Measures

How to capture convexity of measures?

Definition 5 (Borell '75).

Fix $s \in [-\infty, \infty]$. A finite measure μ on \mathbb{R}^n is called s-concave if

$$\mu((1-\lambda)A + \lambda B) \ge \left[(1-\lambda)\,\mu(A)^s + \lambda\,\mu(B)^s \right]^{1/s}$$

for non-empty Borel subsets $A, B \subseteq \mathbb{R}^n$.

Convexity of Measures

How to capture convexity of measures?

Definition 5 (Borell '75).

Fix $s \in [-\infty, \infty]$. A finite measure μ on \mathbb{R}^n is called s-concave if

$$\mu((1-\lambda)A + \lambda B) \ge \left[(1-\lambda)\,\mu(A)^s + \lambda\,\mu(B)^s \right]^{1/s}$$

for non-empty Borel subsets $A, B \subseteq \mathbb{R}^n$.

ullet The case $s=-\infty$ describes the largest class of measures, defined by

$$\mu((1-\lambda)A + \lambda B) \ge \min\{\mu(A), \mu(B)\}.$$

Its members are called *convex measures* (or hyperbolic measures).

Borell's Characterization of Convex Measures

• An absolutely continuous measure is log concave (corresponds to s=0) if and only if its density is a log-concave function (**Prékopa**).

Borell's Characterization of Convex Measures

• An absolutely continuous measure is log concave (corresponds to s=0) if and only if its density is a log-concave function (**Prékopa**).

Generalization of Prékopa's characterization

Theorem 1 (Borell '75).

A measure μ on \mathbb{R}^n is κ - concave (for $\kappa \leq 1/n$) and absolutely continuous with respect to the Lebesgue measure if and only if it has a density that is a $s_{\kappa,n}$ - concave function, where $s_{\kappa,n}=\frac{\kappa}{1-\kappa n}$

Examples/ Motivation

Which measures have convexity properties?

Examples/ Motivation

Which measures have convexity properties?

• Lebesgue measure on \mathbb{R}^n .

(Brunn-Minkowski Inequality) If A and B are Borel subsets of \mathbb{R}^n , then

$$|(1 - \lambda)A + \lambda B|| \ge \left((1 - \lambda) |A|^{1/n} + \lambda |B|^{1/n} \right)^n.$$

Examples/ Motivation

Which measures have convexity properties?

• Lebesgue measure on \mathbb{R}^n .

(Brunn-Minkowski Inequality) If A and B are Borel subsets of \mathbb{R}^n , then

$$|(1-\lambda)A+\lambda B)| \ge \left((1-\lambda)|A|^{1/n} + \lambda |B|^{1/n}\right)^n.$$

- $\diamond |\cdot|$ is $\frac{1}{n}$ concave.
- \diamond $|\cdot|$ is $\overset{\sim}{0}$ concave, i.e. log-concave.
- $\diamond~|\cdot|$ is $-\infty\text{-}$ concave, i.e. convex.

Examples/ Motivation ctd.

• Uniform measure on a convex body K in \mathbb{R}^n has density $|K|^{-1}\mathbb{1}_K$ which is ∞ - concave, and thus the measure is $\frac{1}{n}$ - concave.

Examples/ Motivation ctd.

- Uniform measure on a convex body K in \mathbb{R}^n has density $|K|^{-1}\mathbb{1}_K$ which is ∞ concave, and thus the measure is $\frac{1}{n}$ concave.
- Standard Gaussian measure on \mathbb{R}^n :

$$\gamma_n(x) = (2\pi)^{-n/2} e^{-\frac{\|x\|^2}{2}}.$$

is 0- concave, i.e. log-concave. Equivalently,

$$\gamma_n((1-\lambda)A + \lambda B) \ge \gamma_n(A)^{1-\lambda}\gamma_n(B)^{\lambda}.$$

Examples/ Motivation ctd.

- Uniform measure on a convex body K in \mathbb{R}^n has density $|K|^{-1}\mathbb{1}_K$ which is ∞ concave, and thus the measure is $\frac{1}{n}$ concave.
- Standard Gaussian measure on \mathbb{R}^n :

$$\gamma_n(x) = (2\pi)^{-n/2} e^{-\frac{\|x\|^2}{2}}.$$

is 0- concave, i.e. log-concave. Equivalently,

$$\gamma_n((1-\lambda)A + \lambda B) \ge \gamma_n(A)^{1-\lambda}\gamma_n(B)^{\lambda}.$$

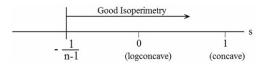
In addition, many probability distributions including Cauchy, Beta, Student's t, log-Normal, Pareto have stronger convexity properties.

Motivation for Convex Measures/Functions

• Extend general properties of log-concave measures (corresponds to s=0) - concentration, isoperimetric inequality, etc.

Motivation for Convex Measures/Functions

• Extend general properties of log-concave measures (corresponds to s=0) - concentration, isoperimetric inequality, etc.



 Generalize techniques like localization due to Lovász and Simonovits '90s.

The principle of the localization

Convexity in the Discrete Setting

Convexity in the discrete setting?

Convexity in the Discrete Setting

Convexity in the discrete setting?

ullet A function $V:\mathbb{Z} o \mathbb{R} \cup \{+\infty\}$ is said convex if

$$\Delta^2 V(z) := V(z-1) - 2V(z) + V(z+1) \geq 0 \ \text{ for all } z \in \mathbb{Z}.$$

Convexity in the Discrete Setting

Convexity in the discrete setting?

ullet A function $V:\mathbb{Z} o \mathbb{R} \cup \{+\infty\}$ is said convex if

$$\Delta^2 V(z) := V(z-1) - 2V(z) + V(z+1) \geq 0 \ \text{ for all } z \in \mathbb{Z}.$$

ullet Equivalently, V is convex on $\mathbb Z$ if and only if there exists a continuous and convex function $\bar V$ such that $\bar V=V$ on $\mathbb Z.$

Extension of Convexity in the Discrete Setting

A natural extension of s-concavity in the discrete setting

Definition 6 (Discrete *s*-concave).

Fix $s\in [-\infty,\infty]$. A function $f:\mathbb{Z}\to\mathbb{R}^+$ is s-concave if $\{f>0\}$ is an interval of integers and

$$f(k) \ge \left[\frac{f(k-1)^s + f(k+1)^s}{2} \right]^{1/s}.$$

Extension of Convexity in the Discrete Setting

A natural extension of s-concavity in the discrete setting

Definition 6 (Discrete *s*-concave).

Fix $s\in [-\infty,\infty]$. A function $f:\mathbb{Z}\to\mathbb{R}^+$ is s-concave if $\{f>0\}$ is an interval of integers and

$$f(k) \ge \left\lceil \frac{f(k-1)^s + f(k+1)^s}{2} \right\rceil^{1/s}$$
.

- The cases $s \in \{-\infty, \infty\}$ are defined as limiting cases.
- The case s=0 corresponds to discrete log-concavity (LC), i.e. $f^2(k) \ge f(k-1) f(k+1)$.

Probability

• A discrete random variable X is called s-concave if its probability mass function (p.m.f) is s-concave w.r.t counting measure.

Probability

• A discrete random variable X is called s-concave if its probability mass function (p.m.f) is s-concave w.r.t counting measure.

Example 1.

For s > 0, the Zipf distribution given by the p.m.f

$$f(k) = \frac{1}{\zeta(s)} \frac{1}{k^{s+1}}, \ k = 1, 2, 3, \dots$$

is $-\frac{1}{s+1}$ - concave.

Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **log-concave** (w.r.t the counting measure) if its probability mass function $p(k) = \mathbb P(X=k)$ satisfies,

$$p^2(k) \ge p(k-1) p(k+1)$$
 for all $k \in \mathbb{Z}$.

Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **log-concave** (w.r.t the counting measure) if its probability mass function $p(k) = \mathbb P(X=k)$ satisfies,

$$p^2(k) \ge p(k-1) \, p(k+1)$$
 for all $k \in \mathbb{Z}$.

Definition 8 (Generalized LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **generalized log-concave** w.r.t a reference measure γ , if its probability mass function p w.r.t γ is LC.

Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **log-concave** (w.r.t the counting measure) if its probability mass function $p(k) = \mathbb P(X=k)$ satisfies,

$$p^2(k) \geq p(k-1)\,p(k+1) \ \text{ for all } k \in \mathbb{Z}\,.$$

Definition 8 (Generalized LC Random Variables).

A random variable X on $\mathbb Z$ is said to be **generalized log-concave** w.r.t a reference measure γ , if its probability mass function p w.r.t γ is LC.

• X is called **strongly LC** (or **ultra-log-concave**), if γ is a Poisson measure.

Examples

Continuous Settini

Measures :-

Lebesgue measure

Probability:-

- Normal
- Uniform
- Exponential
- Chi
- Laplace

Discrete Setting

- Bernoulli
- Binomial
- Poisson
- Geometric
- · Negative binomial
- Hypergeometric

Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are well-understood in the continuous setting!!

Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC probabilities on $\ensuremath{\mathbb{Z}}.$

Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC probabilities on \mathbb{Z} .

Example:

- Concentration behavior.
- Large and small deviation.
- Existence of moments.
- Stability under convolution.
- Geometric inequalities (Prékopa-Leindler etc.)
- Dilation inequalities.

An Optimization Technique?

- Concentration behavior
- Large and small deviation
- · Existence of moments
- Stability under convolution
- Geometric inequalities
- Dilation inequalities

Constrained optimization-type problems

An Optimization Technique?

Goal: Develop an optimization-type technique!

Let's call this technique a "discrete localization"

A Discrete Localization

Notation: Let $a, b \in \mathbb{Z}$.

- $[a, b] = \{a, a + 1, a + 2, ..., b\}.$
- $\mathcal{P}(\llbracket a,b \rrbracket)$: The set of all probabilities supported on $\llbracket a,b \rrbracket$.
- $h_1, h_2, ..., h_p$: Arbitrary real-valued functions defined on [a, b].
- $h = (h_1, h_2, ..., h_p).$

A Discrete Localization

Notation: Let $a, b \in \mathbb{Z}$.

- $[a, b] = \{a, a + 1, a + 2, ..., b\}.$
- $\mathcal{P}(\llbracket a,b \rrbracket)$: The set of all probabilities supported on $\llbracket a,b \rrbracket$.
- $h_1, h_2, ..., h_p$: Arbitrary real-valued functions defined on [a, b].
- $h = (h_1, h_2, ..., h_p).$

Consider the following set:

$$\mathcal{P}_h([\![a,b]\!]) = \left\{ \mathbb{P}_X \in \mathcal{P}([\![a,b]\!]) \, : \, \mathsf{X} \; \mathsf{log\text{-}concave} \, , \, \mathbb{E}[h_i(X)] \geq 0 \right\}.$$

A Discrete Localization ctd.

Theorem 2 (H. '22).

If $\mathbb{P}_X \in conv(\mathcal{P}_h([\![a,b]\!]))$ is an extreme point, then it is log piecewise affine. (*)

A Discrete Localization ctd.

Theorem 2 (H. '22).

If $\mathbb{P}_X \in conv(\mathcal{P}_h([\![a,b]\!]))$ is an extreme point, then it is log piecewise affine. (*)

ullet More specifically, if e^{-V} is the probability mass function of \mathbb{P}_X , then V is the maximum of at most p discrete affine functions.

A Discrete Localization ctd.

Theorem 2 (H. '22).

If $\mathbb{P}_X \in conv(\mathcal{P}_h(\llbracket a,b \rrbracket))$ is an extreme point, then it is log piecewise affine. (*)

• More specifically, if e^{-V} is the probability mass function of \mathbb{P}_X , then V is the maximum of at most p discrete affine functions.

Corollary 1 (Finite dimensional Krein-Milman).

Let $\Phi: \mathcal{P}_h(\llbracket a,b \rrbracket) \to \mathbb{R}$ be convex. Then,

$$\sup_{\mathbb{P}_X \in \mathcal{P}_h([\![a,b]\!])} \Phi(\mathbb{P}_X) \le \sup_{\mathbb{P}_X \in \mathcal{A}_h([\![a,b]\!])} \Phi(\mathbb{P}_X),$$

where $\mathcal{A}_h(\llbracket a,b \rrbracket) = \mathcal{P}_h(\llbracket a,b \rrbracket) \cap \{\mathbb{P}_X : X \text{ with PMF as in (*)}\}$

Applications

- Concentration behavior
- Large and small deviation
- Existence of moments
- Stability under convolution
- Geometric inequalities
- Dilation inequalities

CONCENTRATION FOR ULC

Ultra Log-Concave Random Variables

Definition 9 (ULC/ Strongly Log-Concave).

A random variable X taking values in $\{0, 1, 2, ...\}$ is said to be **ultra** log-concave (ULC) if its probability mass function p is LC w.r.t Poisson measure, i.e.

$$p^2(k) \ge \frac{k+1}{k} p(k+1) p(k-1)$$
 for all $k \ge 1$.

Ultra Log-Concave Random Variables

Definition 9 (ULC/ Strongly Log-Concave).

A random variable X taking values in $\{0, 1, 2, ...\}$ is said to be **ultra** log-concave (ULC) if its probability mass function p is LC w.r.t Poisson measure, i.e.

$$p^2(k) \ge \frac{k+1}{k} p(k+1) p(k-1)$$
 for all $k \ge 1$.

Examples:

- Binomial
- Poisson
- Sums of i.i.d binomial with arbitrary parameters
- Hypergeometric distribution (= sum of independent Bernoulli, Ehm
 '91).

Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from $\mathbb{E}[X]$?

Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from $\mathbb{E}[X]$?

i.e,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le D(t)$$

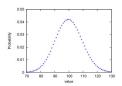


FIGURE 5. The Binomial distribution B(1000, 0.1).

Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from $\mathbb{E}[X]$?

i.e,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le D(t)$$

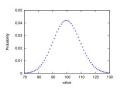


Figure 5. The Binomial distribution B(1000, 0.1).

What does D(t) look like?

Concentration For ULC Random Variables

Theorem 3 (H., Marsiglietti, Melbourne '22).

For any X- ultra log-concave,

- $\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tZ}]$ for all $t \in \mathbb{R}$, where $Z \sim Pois(\mathbb{E}[X])$.
- $\bullet \ \ \mathbb{P}(|X \mathbb{E}[X]| \geq t) \leq 2e^{\frac{-t^2}{2\,(t + \mathbb{E}[X])}} \ \ \text{for all } t \geq 0 \, .$

Concentration For ULC Random Variables

Theorem 3 (H., Marsiglietti, Melbourne '22).

For any X- ultra log-concave,

- $\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tZ}]$ for all $t \in \mathbb{R}$, where $Z \sim Pois(\mathbb{E}[X])$.
- $\bullet \ \mathbb{P}(|X \mathbb{E}[X]| \geq t) \leq 2e^{\frac{-t^2}{2\,(t + \mathbb{E}[X])}} \ \text{ for all } t \geq 0\,.$
- In other words, all ultra log-concave sequences exhibit Poisson-type concentration.

FEIGE'S CONJECTURE

Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables $X_1, X_2, ..., X_n$ such that $\mathbb{E}[X_i] \leq 1$. Let $X = \sum_{i=1}^n X_i$. Then

$$\mathbb{P}(X < \mathbb{E}[X] + 1) \ge \frac{1}{e}.$$

Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables $X_1, X_2, ..., X_n$ such that $\mathbb{E}[X_i] \leq 1$. Let $X = \sum_{i=1}^n X_i$. Then

$$\mathbb{P}(X < \mathbb{E}[X] + 1) \ge \frac{1}{e}.$$

The bound is best possible!

Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables $X_1, X_2, ..., X_n$ such that $\mathbb{E}[X_i] \leq 1$. Let $X = \sum_{i=1}^n X_i$. Then

$$\mathbb{P}(X < \mathbb{E}[X] + 1) \ge \frac{1}{e}.$$

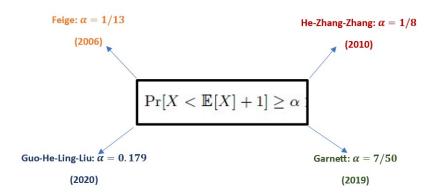
The bound is best possible!

Let X_i be i.i.d, $X_i = n + 1$ with probability $\frac{1}{n+1}$ and $X_i = 0$ otherwise.

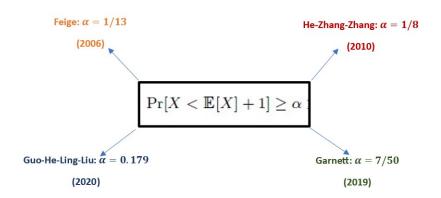
Then,

$$\mathbb{P}(\sum_{i=1}^{n} X_i < n+1) = \mathbb{P}(\sum_{i=1}^{n} X_i = 0) = \left(1 - \frac{1}{n+1}\right)^n \to \frac{1}{e}$$

What Is Known?



What Is Known?



- The conjectured bound holds for binomial and independent Bernoulli sums (follows from a special case of Samuel's conjecture).
- For X-Poisson, $\mathbb{P}(X \leq \mathbb{E}[X]) > 1/e$ (**Teicher '55**).

Feige's Conjecture for LC Random Variables

Theorem 4 (Alqasem, H., Marsiglietti, Melbourne '24).

Let X be a discrete log-concave random variable. Then

$$\mathbb{P}(X < \mathbb{E}[X] + 1) \ge e^{-1}.$$

The inequality is sharp for distributions of the form $\mathbb{P}(X=k)=Cn^{k/n}$, for k=1,2,...,n.

Proof Ideas

- By approximation, reduce the inequality to LC random variables with finite support.
- We can further assume that the support is [1, N].
- Let X_0 be any random variable supported on $\mathcal{P}(\llbracket 1, N \rrbracket)$.
- Let $h: [1, N] \to \mathbb{R}$ be given by $h(k) = \mathbb{E}[X_0] k$.

$$\mathcal{P}_h(\llbracket 1, N \rrbracket) = \left\{ \mathbb{P}_X \in \mathcal{P}(\llbracket 1, N \rrbracket) : \mathsf{X} \text{ log-concave}, \ \mathbb{E}[h(X)] \ge 0 \right\}.$$

ullet The discrete localization (with a single constraint) implies the extreme points are log-affine, i.e. a random variable X with the probability mass function defined as,

$$p(n) = C\,\lambda^n \mathbb{1}_{\llbracket K,M \rrbracket}(n), \,\, \text{where} \, \lambda, C > 0 \, \text{and} \,\, \llbracket K,M \rrbracket \subset \llbracket 1,N \rrbracket$$

Proof Ideas ctd.

- Now, invoke Krein-Milman.
- Choose the convex functional $\Phi(\mathbb{P}_X) = \mathbb{P}_X(A)$, where A is a Borel subset in \mathbb{R} .
- In fact, take $A = [\mathbb{E}[X] + 1, \infty]$, so that

$$\Phi(\mathbb{P}_X) = \mathbb{P}_X(A) = \mathbb{P}(X \ge \mathbb{E}[X] + 1).$$

• We conclude by verifying this inequality $\mathbb{P}(X \geq \mathbb{E}[X] + 1) \leq 1 - \frac{1}{e}$ for X- log-affine.

Thank You!