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Convex Sets ctd.

Definition 1 (convex sets).

A set K ⊆ Rn is convex, if for any x, y ∈ K and 0 ≤ λ ≤ 1,
λx+ (1− λ) y ∈ K.
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Convex Functions

Definition 2 (convex functions).

A function f : Rn → R is convex if its domain is a convex set and for all
x, y in its domain, and 0 ≤ λ ≤ 1,

f(λx+ (1− λ) y) ≤ λf(x) + (1− λ)f(y).
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Convex/Concave Functions & Extensions

A function f is concave iff −f is convex.

A convenient generalization of the standard convexity definition is the
following:

Definition 3 (s−concave functions).

Fix s ∈ [−∞,∞]. A function f : Rn → [0,∞) is s−concave if

f((1− λ)x+ λy) ≥ [(1− λ) f(x)s + λf(y)s]1/s ,

whenever f(x)f(y) > 0.

The parameter s is understood as a convexity parameter.
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s-concavity of Functions ctd.

Definition 4 (s−concave functions).

Fix s ∈ [−∞,∞]. A function f : Rn → [0,∞) is s−concave if

f((1− λ)x+ λy) ≥ [(1− λ) f(x)s + λf(y)s]1/s ,

whenever f(x)f(y) > 0.

If s = +∞, then f((1− λ)x+ λy) ≥ max{f(x), f(y)}.
If s = 0, then f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ.

If s = −∞, then f((1− λ)x+ λy) ≥ min{f(x), f(y)}.

NOTE: For a, b > 0, the map s → [(1− λ) as + λbs]1/s is
non-decreasing!!
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Convexity of Measures

Definition 5 (Borell ’75).

Fix s ∈ [−∞,∞]. A finite measure µ on Rn is called s−concave if

µ((1− λ)A+ λB) ≥ [(1− λ)µ(A)s + λµ(B)s]1/s

for non-empty Borel subsets A,B ⊆ Rn.

The case s = −∞ describes the largest class of measures, defined by

µ((1− λ)A+ λB) ≥ min{µ(A), µ(B)}.

Its members are called convex measures (or hyperbolic measures).
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Borell’s Characterization of Convex Measures

An absolutely continuous measure is log concave (corresponds to
s = 0) if and only if its density is a log-concave function (Prékopa).

Theorem 1 (Borell ’75).

A measure µ on Rn is κ- concave (for κ ≤ 1/n) and absolutely continuous
with respect to the Lebesgue measure if and only if it has a density that is

a sκ,n- concave function, where sκ,n =
κ

1− κn
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Examples/ Motivation

Lebesgue measure on Rn.

(Brunn-Minkowski Inequality) If A and B are Borel subsets of Rn,
then

|(1− λ)A+ λB)| ≥
(
(1− λ) |A|1/n + λ |B|1/n

)n
.

⋄ | · | is 1
n - concave.

⋄ | · | is 0- concave, i.e. log-concave.
⋄ | · | is −∞- concave, i.e. convex.
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Examples/ Motivation ctd.

Uniform measure on a convex body K in Rn has density |K|−1
1K

which is ∞- concave, and thus the measure is 1
n - concave.

Standard Gaussian measure on Rn:

γn(x) = (2π)−n/2e−
∥x∥2

2 .

is 0- concave, i.e. log-concave. Equivalently,

γn((1− λ)A+ λB) ≥ γn(A)1−λγn(B)λ.
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Motivation for Convex Measures/Functions

Extend general properties of log-concave measures (corresponds to
s = 0) - concentration, isoperimetric inequality, etc.

Generalize techniques like localization due to Lovász and
Simonovits ’90s.
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Convexity in the Discrete Setting

A function V : Z → R ∪ {+∞} is said convex if

∆2V (z) := V (z − 1)− 2V (z) + V (z + 1) ≥ 0 for all z ∈ Z.

Equivalently, V is convex on Z if and only if there exists a continuous
and convex function V̄ such that V̄ = V on Z.
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Extension of Convexity in the Discrete Setting

Definition 6 (Discrete s-concave).

Fix s ∈ [−∞,∞]. A function f : Z → R+ is s−concave if {f > 0} is an
interval of integers and

f(k) ≥
[
f(k − 1)s + f(k + 1)s

2

]1/s
.

The cases s ∈ {−∞,∞} are defined as limiting cases.

The case s = 0 corresponds to discrete log-concavity (LC), i.e.
f2(k) ≥ f(k − 1) f(k + 1).
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Probability

A discrete random variable X is called s-concave if its probability
mass function (p.m.f) is s-concave w.r.t counting measure.

Example 1.

For s > 0, the Zipf distribution given by the p.m.f

f(k) =
1

ζ(s)

1

ks+1
, k = 1, 2, 3, . . .

is − 1
s+1 - concave.
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Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on Z is said to be log-concave (w.r.t the counting
measure) if its probability mass function p(k) = P(X = k) satisfies,

p2(k) ≥ p(k − 1) p(k + 1) for all k ∈ Z .

Definition 8 (Generalized LC Random Variables).

A random variable X on Z is said to be generalized log-concave w.r.t a
reference measure γ, if its probability mass function p w.r.t γ is LC.

X is called strongly LC (or ultra-log-concave), if γ is a Poisson
measure.
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Examples
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Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are
well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC
probabilities on Z.

Example:

Concentration behavior.

Large and small deviation.

Existence of moments.

Stability under convolution.

Geometric inequalities (Prékopa-Leindler etc.)

Dilation inequalities.
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An Optimization Technique?

Goal: Develop an optimization-type technique!
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A Discrete Localization

Notation: Let a, b ∈ Z.

Ja, bK = {a, a+ 1, a+ 2, ..., b}.
P(Ja, bK) : The set of all probabilities supported on Ja, bK.
h1, h2, ..., hp: Arbitrary real-valued functions defined on Ja, bK.
h = (h1, h2, ..., hp).

Consider the following set:

Ph(Ja, bK) = {PX ∈ P(Ja, bK) : X log-concave , E[hi(X)] ≥ 0} .
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A Discrete Localization ctd.

Theorem 2 (H. ’22).

If PX ∈ conv(Ph(Ja, bK)) is an extreme point, then it is log piecewise
affine. (⋆)

More specifically, if e−V is the probability mass function of PX , then
V is the maximum of at most p discrete affine functions.

Corollary 1 (Finite dimensional Krein-Milman).

Let Φ : Ph(Ja, bK) → R be convex. Then,

sup
PX∈Ph(Ja,bK)

Φ(PX) ≤ sup
PX∈Ah(Ja,bK)

Φ(PX) ,

where Ah(Ja, bK) = Ph(Ja, bK) ∩ {PX : X with PMF as in (⋆)}

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025 22 / 34



A Discrete Localization ctd.

Theorem 2 (H. ’22).

If PX ∈ conv(Ph(Ja, bK)) is an extreme point, then it is log piecewise
affine. (⋆)

More specifically, if e−V is the probability mass function of PX , then
V is the maximum of at most p discrete affine functions.

Corollary 1 (Finite dimensional Krein-Milman).

Let Φ : Ph(Ja, bK) → R be convex. Then,

sup
PX∈Ph(Ja,bK)

Φ(PX) ≤ sup
PX∈Ah(Ja,bK)

Φ(PX) ,

where Ah(Ja, bK) = Ph(Ja, bK) ∩ {PX : X with PMF as in (⋆)}

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025 22 / 34



A Discrete Localization ctd.

Theorem 2 (H. ’22).

If PX ∈ conv(Ph(Ja, bK)) is an extreme point, then it is log piecewise
affine. (⋆)

More specifically, if e−V is the probability mass function of PX , then
V is the maximum of at most p discrete affine functions.

Corollary 1 (Finite dimensional Krein-Milman).

Let Φ : Ph(Ja, bK) → R be convex. Then,

sup
PX∈Ph(Ja,bK)

Φ(PX) ≤ sup
PX∈Ah(Ja,bK)

Φ(PX) ,

where Ah(Ja, bK) = Ph(Ja, bK) ∩ {PX : X with PMF as in (⋆)}

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025 22 / 34



Applications
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CONCENTRATION FOR ULC
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Ultra Log-Concave Random Variables

Definition 9 (ULC/ Strongly Log-Concave).

A random variable X taking values in {0, 1, 2, ...} is said to be ultra
log-concave (ULC) if its probability mass function p is LC w.r.t Poisson
measure, i.e.

p2(k) ≥ k + 1

k
p(k + 1) p(k − 1) for all k ≥ 1 .

Examples:

Binomial

Poisson

Sums of i.i.d binomial with arbitrary parameters

Hypergeometric distribution (= sum of independent Bernoulli, Ehm
’91).
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Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from
E[X]?

i.e,
P(|X − E[X]| ≥ t) ≤ D(t)

What does D(t) look like?
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Concentration For ULC Random Variables

Theorem 3 (H., Marsiglietti, Melbourne ’22).

For any X− ultra log-concave,

E[etX ] ≤ E[etZ ] for all t ∈ R, where Z ∼ Pois(E[X]).

P(|X − E[X]| ≥ t) ≤ 2e
−t2

2 (t+E[X]) for all t ≥ 0 .

⋄ In other words, all ultra log-concave sequences exhibit Poisson-type
concentration.
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FEIGE’S CONJECTURE
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Feige’s Conjecture

Conjecture 1 (Feige ’05).

Given n independent non-negative random variables X1, X2, ..., Xn such
that E[Xi] ≤ 1. Let X =

∑n
i=1Xi. Then

P(X < E[X] + 1) ≥ 1

e
.

The bound is best possible!

Let Xi be i.i.d, Xi = n+ 1 with probability 1
n+1 and Xi = 0 otherwise.

Then,

P(
n∑

i=1

Xi < n+ 1) = P(
n∑

i=1

Xi = 0) =

(
1− 1

n+ 1

)n

→ 1

e
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What Is Known?

The conjectured bound holds for binomial and independent Bernoulli
sums (follows from a special case of Samuel’s conjecture).

For X-Poisson, P(X ≤ E[X]) > 1/e (Teicher ’55).
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Feige’s Conjecture for LC Random Variables

Theorem 4 (Alqasem, H., Marsiglietti, Melbourne ’24).

Let X be a discrete log-concave random variable. Then

P(X < E[X] + 1) ≥ e−1.

The inequality is sharp for distributions of the form P(X = k) = Cnk/n,
for k = 1, 2, ..., n.
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Proof Ideas

By approximation, reduce the inequality to LC random variables with
finite support.

We can further assume that the support is J1, NK.
Let X0 be any random variable supported on P(J1, NK).
Let h : J1, NK → R be given by h(k) = E[X0]− k.

Ph(J1, NK) = {PX ∈ P(J1, NK) : X log-concave , E[h(X)] ≥ 0} .

The discrete localization (with a single constraint) implies the
extreme points are log-affine, i.e. a random variable X with the
probability mass function defined as,

p(n) = C λn
1JK,MK(n), whereλ,C > 0 and JK,MK ⊂ J1, NK
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Proof Ideas ctd.

Now, invoke Krein-Milman.

Choose the convex functional Φ(PX) = PX(A), where A is a Borel
subset in R.
In fact, take A = [E[X] + 1,∞], so that

Φ(PX) = PX(A) = P(X ≥ E[X] + 1).

We conclude by verifying this inequality P(X ≥ E[X] + 1) ≤ 1− 1
e for

X- log-affine.
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Thank You!
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