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Convex Sets
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How to tell if a shape is convex?

A zet in the Euclidean space iz convex if it hds “no holes” or “dents”
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How to tell if a shape is convex?

A zet in the Euclidean space iz convex if it hds “no holes” or “dents”
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Convex Sets ctd.

z=Ay+(1-2A)x
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Convex Sets ctd.

Definition 1 (convex sets).

A set K C R"™ is convex, if forany z,y € K and 0 < X <1,
A+ (1-XNyeK.

Non-Convex Sets

AR AD
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Convex Functions
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Every line segment joining two points on its graph does not lie below
the graph at any point
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Convex Functions
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Every line segment joining two points on its graph does not lie below
the graph at any point

Definition 2 (convex functions).

A function f : R™ — R is convex if its domain is a convex set and for all
x,y in its domain, and 0 < A <1,

fAz 4+ (1 =N y) < Af(z) + (1= A)f(y).
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Convex/Concave Functions & Extensions

@ A function f is concave iff —f is convex.
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Convex/Concave Functions & Extensions

@ A function f is concave iff —f is convex.

@ A convenient generalization of the standard convexity definition is the
following:

Definition 3 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

F(L =Nz +Ay) > [ =N f(2)° + M),

whenever f(z)f(y) > 0.
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Convex/Concave Functions & Extensions

@ A function f is concave iff —f is convex.

@ A convenient generalization of the standard convexity definition is the
following:

Definition 3 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

F(L =Nz +Ay) > [ =N f(2)° + M),

whenever f(z)f(y) > 0.

@ The parameter s is understood as a convexity parameter.
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s-concavity of Functions ctd.

Definition 4 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

FL =Nz +Ay) > [(1- ) f2)° + Af()]°,

whenever f(z)f(y) > 0.
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s-concavity of Functions ctd.

Definition 4 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

S =Nz +xy) > (1= ) f@)° + A @)
whenever f(z)f(y) > 0.

o If s =+o0, then f((1 — Nz + Ay) > max{f(x), f(y)}.
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s-concavity of Functions ctd.

Definition 4 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

S =Nz +xy) > (1= ) f@)° + A @)
whenever f(z)f(y) > 0.

o If s =+o0, then f((1 — Nz + Ay) > max{f(x), f(y)}.
o If s =0, then f((1— Nz +Ay) > f(2)'" " f(y)*.
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s-concavity of Functions ctd.

Definition 4 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

S =Nz +xy) > (1= ) f@)° + A @)
whenever f(z)f(y) > 0.

o If s =+o0, then f((1 — Nz + Ay) > max{f(x), f(y)}.

o If s =0, then f((1— Nz +Ay) > f(x)' A f(y)*.
o If s = —o0, then f((1 — ANz + A\y) > min{f(x), f(y)}.
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s-concavity of Functions ctd.

Definition 4 (s—concave functions).

Fix s € [—00,00]. A function f : R™ — [0, 00) is s—concave if

S =Nz +xy) > (1= ) f@)° + A @)
whenever f(z)f(y) > 0.

o If s =400, then f((1 — Nz + Ay) > max{f(x), f(y)}.

o If s=0, then f((1— Nz + \y) > f(z)' " f(y)*.
o If s = —o0, then f((1 — ANz + A\y) > min{f(x), f(y)}.

NOTE: For a,b > 0, the map s — [(1 — \)a® + /\bs]l/s is
non-decreasing!!
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Convexity of Measures

How to eapture econvexity of measures?
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Convexity of Measures

How to eapture econvexity of measures?

Definition 5 (Borell '75).

Fix s € [—00,00]. A finite measure {1 on R™ is called s—concave if
u(1 = N)A+AB) = [(1 = A) u(A)* + Au(B)]*

for non-empty Borel subsets A, B C R".
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Convexity of Measures

How to eapture econvexity of measures?

Definition 5 (Borell '75).

Fix s € [—00,00]. A finite measure {1 on R™ is called s—concave if
u(1 = N)A+AB) = [(1 = A) u(A)* + Au(B)]*

for non-empty Borel subsets A, B C R".

@ The case s = —oo describes the largest class of measures, defined by
u((1 = NA+AB) > min{u(A), u(B)}.

Its members are called convex measures (or hyperbolic measures).
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Borell's Characterization of Convex Measures

@ An absolutely continuous measure is log concave (corresponds to
s = 0) if and only if its density is a log-concave function (Prékopa).
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Borell's Characterization of Convex Measures

@ An absolutely continuous measure is log concave (corresponds to
s = 0) if and only if its density is a log-concave function (Prékopa).

Generadlization of Prékopa’s characterization

Theorem 1 (Borell ’75).

A measure pn on R™ is k- concave (for k < 1/n) and absolutely continuous

with respect to the Lebesgue measure if and only if it has a density that is
K

a sxn- concave function, where s, , = T

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025



Examples/ Motivation

Which measures have convexity properties?
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Examples/ Motivation

Which measures have convexity properties?

@ Lebesgue measure on R™.

runn-Minkowski Inequality an are Borel subsets o ,
Brunn-Minkowski Inequality) If A and B are Borel subsets of R"
then N

(1= NA+AB)| = (1= N A"+ x[BY")"
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Examples/ Motivation

Which measures have convexity properties?

@ Lebesgue measure on R™.

runn-Minkowski Inequality an are Borel subsets o ,
Brunn-Minkowski Inequality) If A and B are Borel subsets of R"
then N

(1= NA+AB)| = (1= N A"+ x[BY")"

o |+ |is 1- concave.
o | -] is 0- concave, i.e. log-concave.
o |- | is —oo- concave, i.e. convex.
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Examples/ Motivation ctd.

@ Uniform measure on a convex body K in R" has density | K| ™11
which is co- concave, and thus the measure is %— concave.
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Examples/ Motivation ctd.

@ Uniform measure on a convex body K in R" has density | K| ™11
which is co- concave, and thus the measure is %— concave.

@ Standard Gaussian measure on R™:
—n/2 _le)?
Tn(x) = (2m) 7™ 2.
is 0- concave, i.e. log-concave. Equivalently,

Yn((1 = A)A+AB) > 'Yn(A)l_)\’Yn(B))\'
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Examples/ Motivation ctd.

@ Uniform measure on a convex body K in R" has density | K| ™11
which is co- concave, and thus the measure is %— concave.

@ Standard Gaussian measure on R™:
—n/2 _le)?
Tn(x) = (2m) 7™ 2.
is 0- concave, i.e. log-concave. Equivalently,

Vn((l - )‘)A + )‘B) > 'Yn(A)l_)\’Yn(B))\'

In addition, many probability distributions including Cauchy, Beta,
Student’s t, log- Normal, Pareto have stronger convexity properties.
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Motivation for Convex Measures/Functions

e Extend general properties of log-concave measures (corresponds to
s = 0) - concentration, isoperimetric inequality, etc.

Good Isoperimetry
T T 5
o1 0 1
n-1 (logconcave) (concave)
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Motivation for Convex Measures/Functions

e Extend general properties of log-concave measures (corresponds to
s = 0) - concentration, isoperimetric inequality, etc.

Good Isoperimetry
T T 5
o1 0 1
n-1 (logconcave) (concave)

@ Generalize techniques like localization due to Lovdasz and
Simonovits '90s.

The principle of the localization

A simple inequality for a specific

Inequality for O-concave I

measures in R" 0-concave measure in R
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Convexity in the Discrete Setting

Convexity in the discrete setting?
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Convexity in the Discrete Setting

Convexity in the discrete setting?

@ A function V : Z — R U {400} is said convex if

A*V(z):=V(z—1)=2V(2) + V(2 +1) >0 forall z € Z.
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Convexity in the Discrete Setting

Convexity in the discrete setting?

@ A function V : Z — R U {400} is said convex if
A*V(z):=V(z—1)=2V(2) + V(2 +1) >0 forall z € Z.

@ Equivalently, V is convex on Z if and only if there exists a continuous
and convex function V such that V =V on Z.
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Extension of Convexity in the Discrete Setting

A natural extension of s-concavity in the discrete setting

Definition 6 (Discrete s-concave).

Fix s € [—00,00]. A function f : Z — R is s—concave if {f > 0} is an
interval of integers and

Flk—1)° + f(k+1)°]"°

HOE ;
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Extension of Convexity in the Discrete Setting

A natural extension of s-concavity in the discrete setting

Definition 6 (Discrete s-concave).

Fix s € [—00,00]. A function f : Z — R is s—concave if {f > 0} is an
interval of integers and

Flk—1)° + f(k+1)°]"°
: .

f(k) >

@ The cases s € {—00,00} are defined as limiting cases.

@ The case s = 0 corresponds to discrete log-concavity (LC), i.e.

F2(k) = f(k—1) f(k+1).
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Probability

@ A discrete random variable X is called s-concave if its probability
mass function (p.m.f) is s-concave w.r.t counting measure.
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Probability

@ A discrete random variable X is called s-concave if its probability
mass function (p.m.f) is s-concave w.r.t counting measure.

For s > 0, the Zipf distribution given by the p.m.f

g 1
IS — 1 concave.
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Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on Z is said to be log-concave (w.r.t the counting
measure) if its probability mass function p(k) = P(X = k) satisfies,

(k) > p(k—1)p(k+1) forallk € Z.
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Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on Z is said to be log-concave (w.r.t the counting
measure) if its probability mass function p(k) = P(X = k) satisfies,

(k) > p(k—1)p(k+1) forallk € Z.

Definition 8 (Generalized LC Random Variables).

A random variable X on 7Z is said to be generalized log-concave w.r.t a
reference measure -y, if its probability mass function p w.r.t vy is LC.

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025



Log-concave Random Variables

Definition 7 (LC Random Variables).

A random variable X on Z is said to be log-concave (w.r.t the counting
measure) if its probability mass function p(k) = P(X = k) satisfies,

(k) > p(k—1)p(k+1) forallk € Z.

Definition 8 (Generalized LC Random Variables).

A random variable X on 7Z is said to be generalized log-concave w.r.t a
reference measure -y, if its probability mass function p w.r.t vy is LC.

o X is called strongly LC (or ultra-log-concave), if v is a Poisson
measure.
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Examples

Heshan Aravinda

Log-Concavity

i
Continuous Setting

Measures :- .
-
* Lebesgue measure .
Probability :- .
.

e Normal
.

e Uniform

e Exponential
e Chi

e Laplace

Discrete Convexity in Probability

\__\‘

Discrete Setting

Bernoulli

Binomial

Poisson
Geometric
Negative binomial
Hypergeometric
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Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are
well-understood in the continuous setting!!
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Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are
well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC
probabilities on Z.
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Motivation: Discrete Setting

Convex measures including log-concave measures and their geometry are
well-understood in the continuous setting!!

One would like to investigate the discrete cases, at least for LC
probabilities on Z.

Example:
@ Concentration behavior.
@ Large and small deviation.
@ Existence of moments.
@ Stability under convolution.
o Geometric inequalities (Prékopa-Leindler etc.)

@ Dilation inequalities.
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An Optimization Technique?

¢ Concentration behavior

e Large and small deviation
s Existence of moments

e Stability under convolution
e Geometric inequalities

o Dilation inequalities

Heshan Aravinda Discrete Convexity in Probability

Constrained optimization-type

problems
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An Optimization Technique?

e Concentration behavior
e Large and small deviation

¢ Existence of moments Constrained optimization-type
e Stability under convolution

problems
e Geometric inequalities

o Dilation inequalities

Goal: Develop an optimization-type technique!

Let’s call this technique a ” ”
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A Discrete Localization

Notation: Let a,b € Z.

e [a,b] ={a,a+1,a+2,...,b}.

e P([a,b]) : The set of all probabilities supported on [a, b].

® hy,ha, ..., hy: Arbitrary real-valued functions defined on [a, b].
® h=(hi,ha,....,hy).
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A Discrete Localization

Notation: Let a,b € Z.

e [a,b] ={a,a+1,a+2,...,b}.

e P([a,b]) : The set of all probabilities supported on [a, b].

® hy,ha, ..., hy: Arbitrary real-valued functions defined on [a, b].
® h=(hi,ha,....,hy).

Consider the following set:

Pr([a,b]) = {Px € P([a,b]) : X log-concave, E[h;(X)] > 0}.
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A Discrete Localization ctd.

Theorem 2 (H. '22).

If Px € conv(Py([a,b])) is an extreme point, then it is log piecewise
affine. (*)
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A Discrete Localization ctd.

Theorem 2 (H. '22).

If Px € conv(Py([a,b])) is an extreme point, then it is log piecewise
affine. (*)

@ More specifically, if e=V is the probability mass function of Py, then
V' is the maximum of at most p discrete affine functions.
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A Discrete Localization ctd.

Theorem 2 (H. '22).

If Px € conv(Py([a,b])) is an extreme point, then it is log piecewise
affine. (*)

@ More specifically, if eV is the probability mass function of Py, then
V' is the maximum of at most p discrete affine functions.

Corollary 1 (Finite dimensional Krein-Milman).
Let @ : Pp([a,b]) — R be convex. Then,

sup o(Px) < sup o(Px),
Px €Pp([a,b]) PxcAp([a,b])

where Ap,([a,b]) = Pr([a,b]) N {Px : X with PMF as in (x)}
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Applications

Concentration behavior

e Large and small deviation

e Existence of moments

e Stability under convolution
e Geometric inequalities

e Dilationinequalities
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CONCENTRATION FOR ULC
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Ultra Log-Concave Random Variables

Definition 9 (ULC/ Strongly Log-Concave).

A random variable X taking values in {0,1,2,...} is said to be ultra

log-concave (ULC) if its probability mass function p is LC w.r.t Poisson
measure, i.e.

E+1

p*(k) > Tp(kﬁ— 1)p(k—1) forall k> 1.

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025



Ultra Log-Concave Random Variables

Definition 9 (ULC/ Strongly Log-Concave).

A random variable X taking values in {0,1,2,...} is said to be ultra
log-concave (ULC) if its probability mass function p is LC w.r.t Poisson
measure, I.e.

E+1
p*(k) > %p(k%—l)p(k—l) forall £ > 1.

Examples:
@ Binomial
@ Poisson
@ Sums of i.i.d binomial with arbitrary parameters

@ Hypergeometric distribution (= sum of independent Bernoulli, Ehm
'91).
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Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from
E[X]?
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Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from
E[X]?

P(|X - E[X]| > 1) < D(#)

vvvvv

FIGURE 5. The Bi-
nomial distribution
B(1000,0.1).

April, 09, 2025
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Concentration Phenomena

If X is strongly LC (or ultra-log-concave), then, how does X deviate from
E[X]?

P(|X - E[X]| > 1) < D(#)

vvvvv

FIGURE 5. The Bi-
nomial distribution
B(1000,0.1).

What does D(t) look like?

April, 09, 2025
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Concentration For ULC Random Variables

Theorem 3 (H., Marsiglietti, Melbourne ’22).

For any X — ultra log-concave,

o E[e!X] < Ele!?] for all t € R, where Z ~ Pois(E[X]).
42

o P(|X —E[X]| >t) < 2e2CFEXD forallt > 0.
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Concentration For ULC Random Variables

Theorem 3 (H., Marsiglietti, Melbourne ’22).

For any X — ultra log-concave,

o E[e!X] < Ele!?] for all t € R, where Z ~ Pois(E[X]).
2

o P(|X — E[X]| > t) < 27T forall t > 0.

¢ In other words, all ultra log-concave sequences exhibit Poisson-type
concentration.
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FEIGE'S CONJECTURE
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Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables X1, Xo, ..., X, such
that E[X;] < 1. Let X = " | X;. Then

P(X <E[X]+1) >

Q|
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Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables X1, Xo, ..., X, such
that E[X;] < 1. Let X = " | X;. Then

P(X <E[X]+1) >

Q|

The bound is best possible!

Heshan Aravinda Discrete Convexity in Probability April, 09, 2025



Feige's Conjecture

Conjecture 1 (Feige '05).

Given n independent non-negative random variables X1, Xo, ..., X, such
that E[X;] < 1. Let X = " | X;. Then

P(X <E[X]+1) >

Q|

The bound is best possible!
Let X; bei.i.d, X; =n + 1 with probability n%rl and X; = 0 otherwise.
Then,

" . 1 \" 1
IP’(ZX¢<n+1):IP)(ZXZ-:()):<1_n+1> - =
=1 =1
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What Is Known?

Feige: @ = 1/13 He-Zhang-Zhang: & = 1/8

2006
(2006) « (o0}
rd

/

s/
#

PriX < E[X] +1] > o

r bt
e N
I3 Y
Guo-He-Ling-Liv: @ = 0.179 Garnett: @ = 7/50

(2020) (2019)
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What Is Known?

Feige: @ = 1/13 He-Zhang-Zhang: & = 1/8
2006
( ) « (2010)
A
b

PriX < E[X] +1] > o

P e
i

S
e

> &
&
Guo-He-Ling-Liv: @ = 0.179

A
Garnett: @ = 7/50

(2020) (2019)

@ The conjectured bound holds for binomial and independent Bernoulli
sums (follows from a special case of Samuel’s conjecture).

e For X-Poisson, P(X < E[X]) > 1/e (Teicher ’55).

Heshan Aravinda

Discrete Convexity in Probability
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Feige's Conjecture for LC Random Variables

Theorem 4 (Alqasem, H., Marsiglietti, Melbourne '24).
Let X be a discrete log-concave random variable. Then

P(X <E[X]+1)>e L

The inequality is sharp for distributions of the form "( X'

k) = Cnk/m,
fork=1,2,...,n.

Heshan Aravinda
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Proof Ideas

@ By approximation, reduce the inequality to LC random variables with
finite support.

@ We can further assume that the support is [1, N].
o Let X be any random variable supported on P([1, N]).
o Let h: 1, N] — R be given by h(k) = E[Xo] — k.

Pr([1,N]) = {Px € P([1,N]) : X log-concave, E[h(X)] > 0}.

@ The discrete localization (with a single constraint) implies the
extreme points are log-affine, i.e. a random variable X with the
probability mass function defined as,

p(n) = C X" pp(n), where X\, C' > 0and [K,M] C [1,N]
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Proof ldeas ctd.

@ Now, invoke Krein-Milman.

@ Choose the convex functional ®(Px) = Px(A), where A is a Borel
subset in R.

o In fact, take A = [E[X] + 1, 00}, so that
P(Py) =Px(A) =P(X > E[X]+1).

e We conclude by verifying this inequality P(X > E[X]+1) <1—1 for
X- log-affine.
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Thank You!
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